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The system considered here is a polarizable semiconductor through which a current is flowing in response 
to an externally applied electric field. Phenomenological equations relating the charge density, polarization, 
electric and magnetic fields, and atomic displacements in such a system are described. It is shown that a 
traveling wave of small amplitude oscillations of these quantities satisfies the equations when the frequency 
co and propagation vector q satisfy a certain dispersion relation which is derived. For some choices of system 
parameters the dispersion relation admits solutions in which co is real and q is complex with real and imaginary 
parts of opposite sign, suggesting the possibility that the system might support amplifying waves. Examples 
are given in which the parameters are as nearly as possible those appropriate to a crystal of indium an-
timonide. Some of the parameters which must be assigned depend on the drift velocity of the electrons, and it 
is difficult to determine appropriate values or ranges of values for them in the interesting region of large drift 
velocities. 

I. INTRODUCTION 

THE investigation described here was stimulated 
by the work of Hutson, McFee, and White,1 who 

amplified ultrasonic waves in a piezoelectric semicon
ductor by applying a steady electric field in the direc
tion of sound-wave propagation and increasing its 
magnitude until the drift velocity of the carriers ex
ceeded the velocity of sound. Hutson and White,2 

White,3 and Quate4 have shown that the amplification 
depends on the transfer of energy from space-charge 
waves traveling on the drifting carriers to the sound 
waves. The work cited suggests the question: Is it 
possible to transfer energy from the space-charge waves 
on carriers drifting in a compound semiconductor to 
the polarization waves associated with the optical 
branches of the vibrational spectrum of such a crystal? 
In an attempt to answer that question we consider the 
phenomenological equations governing the behavior of 
a system consisting of carriers drifting in a polarizable 
medium under the influence of a steady electric field. 
Solutions of these equations in the form of decaying 
or possibly growing traveling waves are sought. The 
values of the various input parameters associated with 
these two types of solutions of the phenomenological 
equations are investigated. Finally, there is a prelimi
nary discussion of the necessity for distinguishing be
tween "amplifying" and "evanescent" growing waves.5 

Coupled traveling waves of the type considered here, 
if they can be excited, might prove of considerable 
interest. The analysis given below indicates that they 
would have frequencies in the range around 1013 cps. 

* Supported by Lockheed Research Laboratories, Palo Alto, 
California. 

f A brief account of this work was presented at the 1963 March 
meeting of the American Physical Society [Bull. Am. Phys. Soc. 
8, 254 (1963)]. 

1 A. R. Hutson, J. H. McFee, and D. L. White, Phys. Rev. 
Letters 7, 237 (1961). 

2 A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962). 
3 D. L. White, J. Appl. Phys. 33, 2547 (1962). 
4 C. F. Quate, M. L. Report No. 889, Microwave Laboratory, 

Stanford University (unpublished). 
5 P. A. Sturrock, Phys. Rev. 112, 1488 (1958). 

They should have interesting and useful interactions 
with other crystal excitations and with electromagnetic 
radiation. 

II. PHENOMENOLOGICAL EQUATIONS 

Of the equations appearing in White's analysis,3 the 
following four, involving the electric displacement D, 
the carrier-current-density J, and the electric field in
tensity 8 are retained in the present work: 

V-D= — 4venSJ 

Y-J—edns/dt, 

J = eixticZ+e&rNnc 

nc=no+fns. 

(1) 

(2) 

(3) 

(4) 

In these equations nc is the density of carriers (here 
assumed to be electrons in the conduction band, in 
order to make the analysis more specific), m is the 
undisturbed equilibrium value of nc (which produces 
electrical neutrality when there is no wave present), 
ns is the space-charge density expressed in units of 
electronic charge (a function of position and time), 
and / is the fraction of the space charge which is pro
duced by mobile electrons (the remaining fraction of 
the space charge is produced by trapped electrons). 
The magnitude of the electronic charge is denoted by 
e, fji is the electron mobility, and £>n is the electron 
diffusion constant. The first two equations should be 
valid in all cases. Equation (3) is expected to hold only 
if the frequency (r_1) of electron collisions is large 
compared to the frequency (o>/2ir) of the wave motion, 
i.e., WT<1, and if the wavelength {2ir/q) of the wave 
motion is large compared to the mean free path le of the 
electrons, i.e., qle<\. 

The description of the polarizable lattice is that 
developed by Born and Huang6 for a diatomic crystal 
with optical isotropy. They introduce the vector w, 
which is the displacement of the positive relative to 

6 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 
(Oxford University Press, New York, 1954). 
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the negative ion multiplied by the square root of the 
reduced mass of the two ions per unit volume. Their 
equations involving w are 

P=&2lW+&22£, 

(5) 

(6) 

where P is the dielectric polarization. The coefficients 
bij are real scalars which Born and Huang relate to 
too, the infrared dispersion frequency, eo, the static 
dielectric constant, and €«,, the high-frequency dielectric 
constant as follows: 

^i i=-coo 2 , (7) 

b12=b2i=l(eo-e«)/47rJ'*a>o, (8) 

622=(eoo-l)/47r. (9) 

For small carrier densities, the relations (7)-(9) are 
sufficiently well satisfied for purposes of the following 
argument. Equations (5) and (6) are valid "whenever 
conditions are everywhere practically uniform over 
regions containing many lattice cells,"7 i.e., the analysis 
which follows is not valid for wavelengths much less 
than 100 A. 

The last three relations needed come from electro
magnetic theory: 

D = £ + 4 T T P , (10) 

V X S ^ - c r K d H / a / ) , (U) 

VXH=c- 1 (47 r J+47raP /^+a8 /a / ) ; (12) 

here H is the magnetic field and c is the velocity of light. 

III. TRAVELING-WAVE SOLUTIONS OF 
THE EQUATIONS 

What is sought are solutions of Eqs. (1)—(12) in 
which the components of the vectors w, £, P, J, D, 
and H and the scalar n8 are of the form 

A=Ao+Aiex-p\j(q'r—cot)2, 

with^4i<<C40. 
When the variables have this form, taking the curl 

of Eq. (11) and substituting Eq. (12) in the result in 
the usual way leads to the relations 

^11= ( V * w ) ( / i l l - i w P i n ) , (13) 

8 l x = ( 4 W / W ) ( W / ^ [ 1 - (WcqYTKJS-iuPSX (14) 

where Ai" means the component of Ai parallel to q 
and Aix stands for a component of Ai perpendicular to q. 

One such solution is obtained by reducing Eq. (5) to 
the form d2will/dt2= —o>2win with 

co2= - M l + J P [ l + ^ o ( « - / M + * / » « S * ) - 1 ] " 1 } , (15) 

in which K2— — kirbnbn/ £<x>bii= (eo—€oo)/eoo, coc=47ra-/e00 

(here <r=noeii)i and fld=— USQ11. [This reduction can 
be performed by operating with (d/dt)V- on Eq. 
(3), and substituting in the result the relation V-J 
= - (4n)-l(d/di) (V- D) which follows from Eqs. (1) and 
(2). The small second-order terms (V-D)i(V- £)i and 
£i-V(V-D)i are neglected. The resulting relation be
tween Diu and <§in combined with Eq. (10) yields a 
relation between Si1 and Pi11 which is substituted in 
Eq. (6) to obtain §iu in terms of wi". The elimination 
of <§iH between this last expression and Eq. (5) gives 
the indicated result.] Equation (15), the dispersion 
relation, is quadratic in q with the solutions 

? = («D/2 f / ^ ){ l± [ l+4 («^« i> ) 
X (co2-Wo

2)/(co2-ZaJo
2)-4i(co/a)i>)]1/2}, (16) 

in which a>D= fv<?/£>n, L=l+K2, and we have replaced 
bu by its value -~u<? [Eq. (7)]. The principal features 
of these two solutions of the dispersion relation are 
discussed in the next section. The remainder of this 
section is devoted to obtaining another solution of 
Eqs. (1)—(12) associated with transverse waves. 

A differential equation involving Wix and wi" can be 
obtained by the following operations: 

The expression for nc in terms of m and V-D coming 
from Eqs. (1) and (4) is substituted in Eq. (3). Neglect
ing second-order terms, the transverse component of 
the resulting equation is 

J^naen&i*— (4a)-liqDiuiif8a*: (17) 

In this equation we substitute the relation between 
Diu and 8iu referred to after Eq. (15), and then insert 
the resulting expression for J ^ in Eq. (14), which 
becomes 

P ^ (47r)-1[(^/co)2-l-47r^((r/co)]£1^ 

+*(*/«) (q/a>) ^ " [ 1 + (q/<*)vf&o" 
+&>fe/«)2/©»2-V/fiaL. (18) 

P i 1 from this equation is substituted in the transverse 
component of Eq. (6), which is then solved for £ i x in 
terms of Wix and £ox. (The coefficient of the term in 
£ox involves Si11.) This expression for £ i x is inserted in 
the transverse component of Eq. (5), and Si11 is re
placed by a complicated coefficient times wi", using 
the relation between Si" and wi" referred to after Eq. 
(15). The final result is 

d2WiV^ 
r 4x012021/ €00611 1 

= bn\ H Wi* 
L e«rl(cq/<S)2— 1 — f (coc/«) J 

^ ' ( f t u W O («o/w) (q/ca)pfwiu 

le^{cq/o>)2-\-i{o>c/o))Jl+{q/o>)tiJ8J^^^ 
-Bo1. (19) 

7 Reference 6, p. 83. 
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FIG. 1. Real and imaginary parts 
of the propagation constant, q, 
versus frequen cy, co, for the indi
cated values of t he parameters. 
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For 8o-L = 0, this equation describes the transverse 
vibrations of the lattice coupled to the electromagnetic 
field in the presence of carriers. When the carrier 
density vanishes (coc=0), it reduces to the dispersion 
relation for the "optical-waves" in a polar insulator.8 

The term in 80
x shows that it is possible to transfer 

energy to the carrier-damped "optical-wave" mode 
from the longitudinal mode previously discussed [Eq. 
(16)] if this latter mode can be excited in the presence 
of a component of steady electric field normal to its 
direction of propagation. 

IV. DISCUSSION OF THE DISPERSION RELATION 

The most interesting feature of the (complex) solu
tions (16) of the dispersion relation between q and co is 
the presence of the *'resonant" term 4(coc/coi>)(co2—co0

2)/ 
(co2—Zcoo2) which becomes infinite as co2 approaches 
Z,coo2. I t will now be shown that for appropriate values 
of the parameters this term causes the real and imagi
nary parts of q to be of opposite sign, implying a 
growing wave solution. I t is desirable to modify the 
resonant term in Eq. (16) to take account of the fact 
that the lattice waves in any real crystal are damped. 
Born and Huang9 have shown that the effects of damp
ing are included well enough for many purposes by 
replacing co0

2 by oj(?—iyoj, where 7 is a clamping coeffi
cient. With this replacement, Eq. (16) becomes 

COD 

2ifvd 

Jldbfl+4-
I L a 

o)c a)2—o0Q2-\-iyo) 

COD co2—Z(coo2 

co " I 1 / 2 

-U 
iyoo) CODJ 

(20) 
Equation (20) leads to the following resolution of q into 
real and imaginary parts: 

8 = ( « j > / 2 / f d ) C ± G - * ( l ± i 0 3 , 
with 

F=[( l+S) 2 +>? 2 ] 1 / 2 cos(0/2) , 

G=C(l+?) 2 +'? 2 ] 1 , 2 s in(8/2) , 

fl-tan-T-Va+fl], ( - x ^ O ) 

(21) 

(22) 

(23) 

(24) 

and 

? = 4(COC /COD)[(CO 2 -CO 0
2 ) (CO 2 -ZCOO 2 )+L(TCO) 2 ] 

^C(co 2 -Lcoo 2 ) 2 +(i :7co) 2 ] , (25) 

n = 4 (CO/CO J D )+4 (CO C /COD)^ 2
7 CO 3 

^[(co2-Lco0
2)2+(L7co)2]. (26) 

To go any further in exploring the form and signifi
cance of the relation between co and g, we must now 
assign values to the parameters involved in it. Available 
results of theory and experiment appear insufficient 
to determine reasonable values or possible ranges of 
values for 3DW. For the purpose of obtaining a prelimi
nary orientation as to the possible forms the solutions 
(21) of the dispersion relation might take, we make the 
unrealistic assumptions that £>w will have the same 
value for electrons drifting at the high velocity Vd as 
for electrons drifting at very low velocities, and that 
frequencies which enter here are still sufficiently small 
and the wavelengths sufficiently large that Eq. (3) is 
always valid. Then relations valid for low drift veloci
ties, low frequencies, and long wavelengths, such as 
the Einstein relation between diffusion and mobility, 
can be made to provide estimates of possible values for 
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9 Reference 6, pp. 120-121. 

FIG. 2. Real part of the propagation constant, q versus fre
quency, co, for three different carrier concentrations and the indi
cated values of the remaining parameters. Both abscissa and 
ordinate scales are linear. 
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FIG. 3. Imaginary part of the propagation constant, q, versus 
frequency, 00, for three different carrier concentrations (the same 
as in Fig. 2) and the indicated values of the remaining parameters 
(also as in Fig. 2). Here the ordinate scale is logarithmic. Note 
also that negative values of Im (q) are plotted upward. 

these parameters. The Einstein relation is 

lxKBTn=e^ny (27) 
with 

M = e r / W * . (28) 

KB is Boltzmann's constant, and Tn is the temperature 
of the electron distribution, which, for low drift ve
locities, equals that of the lattice. These expressions 
imply 

«z>=fm*vi/TKBT»=fpT~l (29) 
with 

p=m*v£/KBTn. (30) 

Now the dispersion relation (21) depends on the 
following parameters: 

wo, eoo, K2, a=m*/m, vd, (3, r, n0, and 7. 

In Figs. 1-3 we have plotted curves of the real and 
imaginary parts of q versus o>, as given by the branch 
of Eq. (21) associated with the lower signs, for a few 
choices of values of these parameters. Because the 
largest values of va reported10 are for electrons in InSb, 
and since large values of va appear to favor the existence 
of growing wave solutions, we have chosen parameter 
values appropriate to electrons in InSb, wherever 
possible. Since reasonable values for r at high Vd and 
for 7 at low temperatures are unknown, the form of the 
dispersion curves for several widely varying choices 
of these parameters was investigated and it was found 
that the qualitative features of the curves given in 
Figs. 1-3 are unaltered by variations of r and 7 over 
one or more decades around the values assigned them 
in these figures. 

10 M. Glicksman and W. A, Hicinbotfiem, Jr., Phys, Rev. 129, 
1572 (1963). 

The figures show that for values of a? in a range 
around o>0 (which range may be broad or narrow, 
depending on the values of the other parameters), the 
real and imaginary parts of q may differ in sign. With 
this sign difference, the approximate solution of the 
system of equations discussed here, in which all quan
tities vary as expp(q-r—co/)], corresponds to a wave 
growing in amplitude as it propagates. A demonstra
tion such as the preceding one that a particular system 
supports growing monochromatic waves is not suffi
cient to prove that it can support useful amplifying 
wave packets.5 Sturrock5 has described a method for 
determining from the dispersion relation for the system 
whether its "growing" waves can be superposed to 
form "amplifying" wave packets or whether they are 
merely "evanescent" waves. This type of investigation 
of the dispersion relation for the system considered in 
this paper has not yet been completed. However, the 
fact that the growing waves discussed by White3 could 
be shown experimentally1 to be amplifying encourages 
the hope that the growing waves in the somewhat 
similar system treated here may also be amplifying 
rather than evanescent. 

I t should be noted that the interesting and experi
mentally realizable ranges of parameters appear to be 
seriously limited by the allowable power dissipation. 
Relations valid for small drift velocities lead to this 
expression for the average rate of power loss per unit 
volume from a steady stream of electrons: 

P 0 = n<m*i*d2/T=f~lnoKBTno)D . (31) 

Inspection of Eqs. (21)-(26) suggests that in order for 
growing wave solutions to exist, COD must be larger than 
a threshold value of about 4I1/2w0. Then to keep the 
power dissipation within tolerable limits, even for 
microsecond pulses, it is necessary to have 10~6 n&>D 
<1022 («number of atoms/cm3), or no<KPCOD-1 or 
^o<1014. To obtain growing waves with this limit on 
no, it may be necessary to make /5^>1 (so that r and, 
hence, OJC can be made large) and/or 7^Cwo. 

I t is clear that we need more knowledge of the 
diffusive behavior of electrons drifting at high veloci
ties, as well as of the collision processes which limit 
drift velocities and of the damping of optical-mode 
vibrations at low temperatures, in order to determine 
whether or not the parameter ranges associated with 
growing waves are accessible to experiment. 
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